内燃機関の排気の半径方向における混合のための低圧力損失混合装置
专利摘要:
排気用の後処理システムが提供される。排気用の後処理システムは、流路に沿って排気の流れを混合するための混合構成を含んでいる。混合構成は、流れの2つの異なる部分の分流を半径方向および角度方向において再編成し、流れの2つの異なる部分を混合する。混合構成は、はじめに略半径方向において層状に形成された温度プロファイルを、角度方向において層状の温度プロファイルに変換して、排気ガスの低温の分流と排気ガスの高温の分流との間の境界面積を拡大させる。後処理システムはまた、燃焼チャンバ、燃焼ハウジング、および燃焼ライナを含んでもよい。混合構成は、燃焼チャンバより下流側に設けられ、燃焼ライナを通過する高温のガスを半径方向における外側方向へ向けるとともに、ライナと燃焼ハウジングとの間を通過する半径方向における外側のより低温のガスを半径方向における内側方向へ向けて、交互に配置する。 公开号:JP2011516789A 申请号:JP2011504063 申请日:2009-04-01 公开日:2011-05-26 发明作者:パターソン クラーク;ビー.マストベルゲン ダン 申请人:ウッドワード,インコーポレーテッドWoodward,Inc.; IPC主号:F01N3-02
专利说明:
[0001] 本発明は、一般に、ディーゼルエンジンの排気システムに関し、より詳細には、ディーゼルエンジンの排気システム用の後処理装置のための混合装置に関する。] 背景技術 [0002] ディーゼルエンジンの製造者や製造使用者(パッケージャ)は、厳しくなりつつある環境のための制約や規制に起因して、かかるエンジンの使用が環境に与える影響を減少し、改善するための技術を開発している。その結果、燃費(経済性)を向上させ、NOXや粒子状物質のような排出物(エミッション)を減少させる試みの中で、エンジン自体の内部における燃焼処理を制御する多くの技術が、実用化されるに至った。しかし、ディーゼルエンジンを作動させるための運転変数やパラメータを与えることが、NOXや粒子状物質の生成と引き換えとなるために、多くのエンジン製造者や製造使用者は、彼らのシステムに排気ガスの後処理装置を適用することが、有用ないし不可欠であることを見い出した。これらの後処理装置は、ディーゼルエンジンからの排気ガスの流れを、ろ過、または触媒反応により浄化して、特定のエンジン排気の排出物を、除去または許容可能な程度にまで減少させるために用いられるものであり、一般には効率的に作動させるための特定の作動温度の要件を有する。] [0003] かかる排気の後処理装置の一は、ディーゼル・パーティキュレート・フィルタ(DPF)と呼ばれている。DPFは、ディーゼルエンジンからの全ての排気ガスが内部を通過するように、エンジンの排気システムに配置される。DPFは、排気ガス中の煤(すす)の粒子がDPFのフィルタの基板に捕集されるように構成される。このようにして、煤の粒子は排気ガスからろ過され、エンジンまたはエンジンシステムは、適用される環境規制に適合することができ、もしくは環境規制を超える性能を得る。] [0004] かかる装置は、重要な環境面の利益をもたらすものであるが、どのようなフィルタであっても、DPFがそれら粒子状物質を堆積し続ける、という問題が起こり得る。時間が経過すると、DPFフィルタの基板には多くの粒子状物質が堆積し、次第に抵抗となるDPFを通過することにより無視できないほどの圧力損失をもたらすこととなる。過剰に抵抗となるDPFを使用する結果、エンジンが次第に過酷な仕事を強いられ、目詰まりしたDPFを通して排気ガスを圧送する事態を招くため、エンジンの熱効率が低下する。排気システムにおける抵抗の増大に起因するこのエンジン性能の低下は、連続的なエンジンの運転とDPFへの煤の堆積を通じてさらに悪化し続け、最終的にはエンジンの故障や停止につながる。] [0005] かかる事態を避けるために、エンジンの製造使用者(パッケージャ)は、一般的にDPFの上流に、利用可能ないくつかのフィルタ加熱装置のうちの一を組み込んで、フィルタに堆積した煤(すす)を周期的に取り除くようにしている。これらのフィルタ加熱装置は、周期的に使用され、DPFに流入する排気流れの温度を、堆積した煤が酸化して排気流れの中の残留酸素を用いて燃焼する温度にまで、人工的に上昇させる。DPFが過剰に抵抗となる手前の時点で(これらの装置が)用いられる場合には、捕集された粒子状物質への点火および燃焼による排除は、安全かつ制御された方法でおこなわれる。このDPFフィルタの基板の煤を制御された方法で燃焼させる処理は、再生と呼ばれる。DPFの再生における一の重要なパラメータは、再生作動中のDPFの温度の均一性である。目標とする再生温度よりも高温または低温であるDPFの局所領域は、再生作動の効率を低下させ得る。高温領域は、温度勾配や加速された煤の酸化によってフィルタを損傷する原因をもたらす可能性がある。一方で、低温領域は、フィルタに煤が除去されない領域を発生させる結果をもたらす可能性がある。] [0006] その他のエンジン排気の後処理装置には、ディーゼル酸化触媒(DOC)、尿素選択的触媒還元システム(SCR)、リーンNOXトラップ等、多種が含まれる。これらの装置の多くは、フィルタ基板の表面の化学物質または排気中の排出物(エミッション)により生じる触媒反応に依存している。これらの装置の中には、基板の上流の排気の流れに化学物質の噴射をおこなうものもある。これらの装置に流入する排気流れの、温度および化学的な均一性は、これらの装置の効率的な作動に対して大きく影響する。基板の表面における高価な触媒の使用は、基板全体が望ましい範囲内で均一な温度および化学的な混合状態にあるときに、最大となる。目標とする温度または化学組成から外れた流れに面する基板の領域は、後処理システムの性能を低下させる。] [0007] 一般的に、DOC(ディーゼル酸化触媒)は約摂氏350度超で作動させなければならず、SCR(選択的触媒還元)システムは約摂氏300度超で作動させなければならない。これらのシステムのいずれも、特定の温度よりも低い温度で作動させると、システムの性能および効率の低下を招く結果となる。リーンNOXトラップにも同様に、温度の制約がある上に、さらに一定の周期ごとに特に酸素を凝集する必要がある。リーンNOXトラップを作動させ、その触媒の表面から、堆積したNOXを除去するためには、酸素が少なく、炭化水素を多く含有する排気が、基板を通過しなければならない。これは、システムの付加的な要件である。] [0008] 以上に検討したように、多くのディーゼル排気の後処理装置は、特有の作動温度、および、場合によっては、種類による組成の要件を有している。これらのシステムにおける課題は、エンジンの排気が、これらの装置の作動を維持するために十分な温度や組成を、常に備えているわけではないという点である。これまで、多くの方法が、後処理装置の適切な作動に必要な補助的な加熱や種類毎の濃度を提供するために発明されてきた。例えば、ディーゼルエンジンの運転パラメータは、装置の適切な作動に十分な程度にまで排気温度を上昇させることとなるように、変更されてもよい。また、排気がディーゼル酸化触媒(DOC)を通過する直前に、ディーゼルエンジンの排気中に、炭化水素燃料を噴射することも可能である。DOCは、排気流れの中の炭化水素を余分に含んだ燃料を、触媒上において排気中の酸素と炭化水素との触媒反応によって熱に変え、それによって、排気ガスが他の後処理装置を通過する前に、排気ガスの温度を上昇させる。しかし、既に言及したように、DOC(ディーゼル酸化触媒)は特有の温度の制約を有し、適切な作動を確実にするためには、DOCへの流入に先立って加熱が必要となる。補助的な加熱は、排気の流路に設けられた補助的な電気ヒータを用いることによって発生させてもよい。この補助的な加熱は、排気ガスが後処理装置を通過する前に与えられる。他のフィルタ再生の方法では、電気ヒータを用いる代わりに、燃料燃焼バーナや燃焼装置が、排気ガスを加熱するために用いられる。] [0009] この加熱をおこなうために、燃料燃焼バーナを用いる場合の課題は、消炎性能、燃焼の安定性、エミッション性能(低排出物性能)、および排気の圧力損失の基準を満たしながら、排気ガスの温度を上昇させる燃焼装置を製造することである。加えて、燃料燃焼バーナを、上記の要件に適合するように、炭化水素を過剰に供給する一方で、残存するエンジン排気中の酸素含有量を減少させるモードにおいて作動させることが必要となり得る。これらの燃焼装置の作動のモードのいずれも、ディーゼル排気の環境についての課題を有している。特に、ディーゼルエンジン用の排気システムにおける作動の条件は、例えば、ガスタービンエンジンにおけるような、他の燃焼器が用いられる作動環境とは大きく異なっている。このように、燃焼装置は、排気流れの流量、温度、および酸素濃度に関する広い範囲において作動しなければならない。ディーゼル排気の流れにおいては、酸素濃度は、約3〜19質量パーセントの範囲であり、CO2やH2O等の他の希釈成分も、大量に存在し得る。ディーゼルエンジンは多様な設定条件の下で作動するので、燃焼装置内で酸化剤として用いられるエンジン排気の組成や温度は、極めて短い時間に、また大きな度合いで変動し得る。排気システムにおける燃焼装置へ供給される酸化剤におけるこれらの変化は、上記の要件を満たす安定した持続的な燃焼に対しては困難な環境をもたらす。] [0010] エンジンの排気システム内で作動する燃焼装置に求められる困難な燃焼要件の結果として、燃焼システムの領域において新しい設計と発明とが求められている。この方途に寄与し得る、燃焼処理として多重ステージを採用する燃焼装置が確立されてきた。Eickhoff等による米国特許第4,951,464号は、燃料がリッチな状態の混合気を、独立した「一次」燃焼室で部分的に燃焼し、残りの燃料を完全に燃焼するための酸素を供給するためにエンジンの排気ガスが加えられた状態で、後続の燃焼室内において二次酸化し得ることを開示している。しかしながら、Eickhoff特許に開示される燃焼装置の設計は、残りの燃料を燃焼させるために導入されるエンジン排気の量を制御することができない設計である点で十分ではない。燃料を完全燃焼させるためのエンジン排気の供給が少な過ぎると、反応が不完全となり、装置から排出される炭化水素の量を増やすこととなる。残りの燃料を燃焼反応させるためのエンジン排気の供給が多過ぎると、失火の原因となり、この場合にも、排出される炭化水素の量を増やすこととなる。] [0011] いくつかの後処理装置に求められる、典型的な、さらなる要件は、装置に流入する際の温度分布の均一性である。後処理装置で要求される典型的な平均温度は、概してバーナの燃焼温度よりもはるかに低い。燃焼温度を許容可能なレベルにまで引き下げる必要から、場合によっては、エンジン排気の全部または一部が、燃焼処理を迂回され、燃焼処理の生成物を冷却するために用いられる。この高温および相対的に低温のガスの再編成は、燃焼装置の下流に位置する後処理装置のための温度の均一性の要求を満足させようとする場合に重要な試みである。一般的な燃焼装置の設計では、燃焼装置アセンブリの中心軸の付近に燃焼領域を有し、エンジン排気を燃焼装置の周囲の環状の流路に迂回させることで、出口温度の分布を、中心部で典型的に高く、外側に向かうに従ってより低くなるように設ける。Brightonによる米国特許第4,651,524号は、かかる典型的な燃焼装置アセンブリを教示している。付け加えるならば、Brightonが開示するような火炎抑制装置は、燃焼装置の流れを過度に制限することにより、この種の装置の作動に典型的に伴うこととなる高温によって、厳しい材料的な要求を課す場合がある。] [0012] Shinzawa等による米国特許第4,538,413号、およびTokura等による米国特許第4,541,239号は、いずれも燃焼処理の周囲においてエンジンの排気の全部または一部を迂回させる概念を教示している。この迂回されたエンジン排気の生成物は、次いで燃焼装置のライナまたは他の装置の孔または開口部を通過して、燃焼装置から出る前に、燃焼による生成物と混合されなければならない。この試みは、混合機構が孔または開口部を通過することによる圧力損失を伴う点で不利である。この方式の混合機構においては、より低温の排気ガスの噴流(ジェット)が生成されて、排気と燃焼による生成物とを素早く混合することが求められる。混合の効率は、噴流(ジェット)が生成される開口部を通過する際の圧力損失の結果と直結する噴流(ジェット)の運動エネルギに依存する。かかる装置をエンジンに適用する際に問題となるのは、エンジンの排気の流れが典型的には極めて広い流量の範囲を有する点である。燃焼装置を通過する、この広い流量の範囲は、これらの開口部を通過する、広い流量の範囲となり、それゆえ開口部を通過する際の広い圧力損失の範囲となる。このため、噴流(ジェット)方式の混合装置は、完全には緩和することができない非効率性を、一般的に有している。低流量では、高エネルギの噴流(ジェット)を生成すべき混合装置を通過する際に大きな圧力損失を生じ得る余地がなく、結果として混合が不十分となる。高流量では、流量の高い混合装置を通過する際に圧力損失が過剰に生じ、その結果、システム効率の低下や、エンジンの過剰な背圧に起因するエンジンの燃料消費の増大を招く。] [0013] 本発明の実施の形態は、エンジン(内燃機関)から排出される排気ガスを混合する、新規かつ改良された装置および方法を提供する。この新規かつ改良された装置および方法は、上流側の流れを複数の分流(セグメント)に分割し、これらの分流を新たな流れ方向を有する下流側へ再編成することにより、圧力損失の低い混合処理を提供する。新規かつ改良された方法および装置の実施の形態では、排気流れの温度プロファイルが、半径方向において層状となった状態から角度方向において層状となった状態になるように調整されて、排気流れの分流の間の境界面積(表面積)と相互作用とを増大する。さらに、本発明の実施の形態は、半径方向へ向けて開口された噴流(ジェット)を生成する孔を流体が通過するように強制する構成ではなく、排気流れを方向付ける構成に関する。このようにして、本発明の実施の形態は、極めて多い流量でも、好適に圧力損失を抑えて作動する。言い換えれば、排気流れの再編成を実現するために、他の混合方法における構成(アレンジメント)のように、半径方向における内向き方向への噴流(ジェット)を生成するために排気流れを大幅に加速する複数の噴流(ジェット)を生成するための開口部を有する高圧の上流部を設ける必要はない。] [0014] 従って、本発明の一の特定の実装においては、流れの軸に沿って流れる排気流れを混合する方法が提供される。この方法は、全体的に排気流れを流れの軸に沿って再編成するステップを含む。排気流れを再編成するステップは、流れの軸から半径方向における外側方向へ離れる方向へ第1の流れの部分を向ける(方向付ける)ステップと、流れの軸に向けて半径方向における内側方向へ第2の流れの部分を向ける(方向付ける)ステップとを含む。第1および第2の部分を向ける(方向付ける)ステップは、第1の部分を複数の第1の分流に分割して複数の第1の分流を半径方向における外側方向に向け(方向付け)、第2の部分を複数の第2の分流に分割して複数の第2の分流を半径方向における内側方向に向ける(方向付ける)ステップを含み、再編成するステップは、第1の部分と第2の部分との間の境界面積(表面積)を拡大するステップを含む。] [0015] 一の実装では、複数の第1の分流は、複数の第1の角度方向において方向付けられた分流であり、複数の第2の分流は、複数の第2の角度方向において方向付けられた分流であって、複数の第1の角度方向において方向付けられた分流と複数の第2の角度方向において方向付けられた分流とを全体的に交互に入れ替えるステップにより、再編成するステップの後の排気流れが生成される。このように、排気流れは、再編成するステップの前において、半径方向における内側の流れ(第1の部分)が高温であり、半径方向における外側の流れ(第2の部分)が内側の流れに対して相対的に低温である半径方向において層状の温度プロファイルを有することができる。一方、再編成するステップの後においては、複数の第1および第2の角度方向において方向付けられた相対的に他方に対して高温および低温の分流を交互に入れ替えるステップによって、排気流れの温度プロファイルが角度方向において層状となる。] [0016] さらに特定の実装では、方法は、流れの第1の部分の複数の第1の分流の断面の形状を変更するステップと、流れの第2の部分の複数の第2の分流の断面の形状を変更するステップとを含むことができる。この実施の形態の望ましい実装においては、再編成の処理において、望ましくない圧力損失を生じる2つの流れの部分の圧縮を回避するように、流れの第1および第2の部分の断面積が維持された状態で、断面形状に変化が生じるように設けられる。] [0017] さらなる実装においては、流れの第1および第2の部分を向ける(方向付ける)ステップは、流れの第1の部分が再編成するステップの前において、流れの軸から第1の平均距離を有するように半径方向に位置し、再編成するステップの後において、流れの第1の部分が流れの軸から第2の平均距離を有するように半径方向に位置して、第2の平均距離は第1の平均距離よりも大きく、流れの第2の部分が再編成するステップの前において、流れの軸から第3の平均距離を有するように半径方向に位置し、再編成するステップの後において、流れの第2の部分が流れの軸から第4の平均距離を有するように半径方向に位置して、第4の平均距離が第3の平均距離よりも小さくなるように、流れの第1の部分の配置を第2の部分に対して相対的に変更するステップを含む。] [0018] 本発明による方法のいくつかの実装においては、高温の中央部の排気流れは、半径方向における外側方向に直接には向かうことなく、高温の排気流れの半径方向における外側に位置して半径方向における内側方向へ向かう低温の排気流れの方向に、一旦、高温の排気流れが引かれるために、直接にではなく、高温の排気流れが半径方向における外側方向へ向かうように設けられる。これにより、高温の排気流れが混合構成の一部に直接的に衝突することが回避される。] [0019] エンジン(内燃機関)からの排気ガスの流れの部分を交互に配置するための、新規かつ改良された排気ガスの混合装置も同様に提供される。新規かつ改良された排気ガスの混合装置は、圧力損失が少なく、排気流れの断面プロファイルに応じて高度に調整された排気流れの混合を実現できる構成とするように、困難を伴うことのない基本設計をおこなうことができる。排気ガスの混合装置は全体的に、複数の第1の流れの配向タブと、複数の第2の流れの配向タブとを含む。第1および第2の流れの配向タブは、流れの軸を取り囲むように配置される。第1の流れの配向タブは、半径方向における内側の排気の流れを半径方向における外側方向へ向ける(方向付ける)ように配置および構成され、第2の流れの配向タブは、半径方向における外側の排気流れを半径方向における内側方向へ向ける(方向付ける)ように配置および構成されている。この混合構成は、排気流れの高温の中核の部分を、排気流れの低温の環状の周辺部分と交互に配置するように再編成することができる。] [0020] 好ましい実装においては、第1の流れの配向タブは、上流側の入口端部と下流側の出口端部とを有する。第2の流れの配向タブは、上流側の入口端部と下流側の出口端部とを有する。第1の流れの配向タブの入口端部は、第1の流れの配向タブの出口端部の半径方向における内側に設けられる。第2の流れの配向タブの入口端部は、第1の流れの配向タブの出口端部の半径方向における外側に設けられる。第1の流れの配向タブの入口端部は、第2の流れの配向タブの入口端部の半径方向における内側に設けられる。第1の流れの配向タブの出口端部は、第2の流れの配向タブの出口端部と第1の流れの配向タブの入口端部の半径方向における外側に設けられる。複数の第1の流れの配向タブの入口端部は、下流側の出口端部よりも狭く設けることができ、複数の第2の流れの配向タブの入口端部は、下流側の出口端部よりも広く設けることができる。] [0021] さらなる混合構成の実装においては、第1および第2の流れの配向タブの各々は、上流側に面した上流側の表面を有する。第1の流れの配向タブの上流側の表面は、入口端部から出口端部にかけて、上流側の表面の接線と流れの軸との間の角度の大きさが、入口端部から出口端部に向かうにつれて増加する凹面形状に設けられる。第2の流れの配向タブの上流側の表面は、入口端部から出口端部にかけて、上流側の表面の接線と流れの軸との間の角度の大きさが、入口端部から出口端部に向かうにつれて増加する凹面形状に設けられる。この凹面の特質は、遷移すべき排気流れの個々の分流のための流路に対して実質的に接線方向の流れ、すなわち流路に対して平行な流れから、流路に対して斜め方向の流れへと、大きな乱流およびこれによりもたらされる圧力損失を生じることなく、滑らかな遷移を提供することである。] [0022] このような、一以上の好ましい実装においては、入口端部の近傍の第1の流れの配向タブの上流側の表面と流れの軸との間の角度が、約0度から約20度までの間の角度に設けられ、流れの軸と第1の流れの配向タブの出口端部の近傍の上流側の表面との間の角度が、約30度から約70度までの間の角度に設けられる。入口端部の近傍の第2の流れの配向タブの上流側の表面と流れの軸との間の角度が、約0度から約20度までの間の角度に設けられ、流れの軸と第2の流れの配向タブの出口端部の近傍の上流側の表面との間の角度が、約30度から約70度までの間の角度に設けられる。] [0023] 一の実装においては、第1の流れの配向タブの上流側の表面は、半径方向における外側方向に面して設けられ、第2の流れの配向タブの上流側の表面は、半径方向における内側方向に面して設けられる。第1の流れの配向タブの各々は、トラフ形の底部と、トラフ形の底部から外側方向および半径方向における外側方向に延在する2つの略半径方向において延在する側壁とを含むスコップ形状に設けられる。第2の流れの配向タブの各々は、トラフ形の底部と、トラフ形の底部から外側方向および半径方向における内側方向に延在する2つの略半径方向において延在する側壁とを含むスコップ形状に設けられる。スコップ状のタブは、排気流れの異なる部分を受け止めて向きを変える作用をより積極的に提供し、排気流れが横向きに、すなわち流れの配向タブの上流側の表面から角度を有する向きに流れることを防止する。] [0024] 本発明の他の実装において、エンジン(内燃機関)からのディーゼル燃料の排気を処理するためのディーゼル燃料の排気用の後処理システムが提供される。後処理システムは、排気を加熱して全体的に半径方向において層状となる温度プロファイルを生成する熱の発生装置を含む。このシステムはまた、熱の発生装置より下流側に、排気流れの半径方向における内側の部分を半径方向における外側方向へ向ける(方向付ける)複数の第1の流れの配向タブと、排気流れの半径方向における外側の部分を半径方向における内側方向へ向ける(方向付ける)複数の第2の流れの配向タブとを有する混合構成を含む。] [0025] より望ましい実装においては、後処理装置は、さらに燃焼装置のハウジング、燃焼装置のライナ、および燃焼装置のハウジングと燃焼装置のライナとの間に配置される環(アニュラス)を含む。燃焼装置のライナは燃焼装置のハウジングの内側に設けられ、排気流れの半径方向における内側の部分が燃焼装置のライナを通過し、排気流れの半径方向における外側の部分が環を通過するように設けられる。混合構成は、排気の内側の部分と排気の外側の部分との分流を入れ替えることにより形成される複数の角度方向において層状に形成される分流が生じるように、第1の流れの配向タブが、燃焼装置のライナを通過する排気の半径方向における内側の部分を、燃焼装置のハウジングの内側の表面へ向けて半径方向における外側方向へ引き出し、第2の流れの配向タブが、環を通過する排気の半径方向における外側の部分を、半径方向における内側方向へ向ける(方向付ける)。この構成は、混合の増大を促進するための排気の内側と外側との境界面積(表面積)における相互作用と、排気流れの断面の全体にわたるより素早い温度分配を促進するためのこれらの間の熱の移送を改善する。] [0026] このような、一の実装においては、流路に対して垂直に取った、混合構成の上流側の環と燃焼装置のライナとを通過する排気の温度プロファイルは、半径方向における内側の流れに高温を有し、半径方向における外側の流れに、内側の流れに対して相対的に低温を有する、全体的に半径方向において層状に構成される。流路に対して垂直に取った、混合構成の下流側の排気の温度プロファイルは、それぞれ交互に高温の部分と低温の部分とを有する、全体的に角度方向において層状に構成される。高温の部分(高低は相対的な表現として用いられる)は、第1の流れの配向タブによって半径方向における外側方向に向けられた(方向付けられた)高温の排気により形成され、第1の流れの配向タブに沿って流れ、低温の部分は、第2の流れの配向タブによって半径方向における内側方向に向けられた(方向付けられた)低温の排気により形成され、第2の流れの配向タブに沿って流れる。] [0027] 好ましい実装においては、第2の流れの配向タブは、内側のライナの半径方向における外側に設けられた入口端部と、内側のライナの半径方向における内側に設けられた出口端部とを有する。このように、第2の流れの配向タブが、低温の半径方向における外側の排気ガスを直接的に内側方向に向ける(方向付ける)ように設けると、低温の排気ガスは、内側のライナを超えて半径方向における内側に延在する第1の流れの配向タブの一部において、内側の高温の排気ガスの部分が直接的に衝突することを防ぐことができる緩衝領域を生成し、第1の流れの配向タブへの熱の移動(熱伝達)を抑制して、熱に起因する破壊からタブを守る。] [0028] 混合構成(ミキシング・アレンジメント)よりも上流側における温度プロファイルは、流れの軸に対して完全に対称とは限らず、実施の形態によっては、第1の流れの配向タブのうちの少なくとも一は、他の一の第1の流れの配向タブとは異なるように構成され、また第2の流れの配向タブのうちの少なくとも一は、他の一の第2の流れの配向タブとは異なるように構成されている。これにより、混合構成を、高温と低温の排気流れを所望の位置へと向かわせて、排気流れの全体的な断面の領域にわたって、温度がさらに素早く均一化できるように設けることができるという利点がもたらされる。加えて、さらにいくつかの実装によれば、混合構成を、例えば温度プロファイルの半径方向における外側の部分が、温度プロファイルの半径方向における内側の部分よりもわずかに高温であるように、半径方向において層状にわずかに逆転した温度分布のように、不均一である一方で、所望の温度プロファイルを生成するように調整することもできる。これにより、下流側のシステムの作動パラメータに利点をもたらすことができる。] [0029] さらに、より積極的に流れを向ける(方向付ける)配向タブが所望される場合には、流れの配向タブは、半径方向および角度方向の両方向において凹面形状のスコップ形状に設けるものとしてもよい。] [0030] 本発明の他の態様、目的及び利点は、添付図面を併せ見れば、以下の詳細な説明によりさらに明らかになるであろう。] [0031] 本明細書に組み入れられ、本明細書の一部分を形成する添付図面は、本発明の複数の態様を例示し、記述とともに、本発明の原理の説明に資する。] 図面の簡単な説明 [0032] 図1は、ディーゼル・パーティキュレート・フィルタ(DPF)の上流側に設けられたディーゼルエンジンの排気の流路における、本発明の教示により構成された燃焼装置の実施の形態を示す、簡略化された側面図(断面図)である。] 図1 [0033] 図2は、ノズル流れをライナに付着させることにより外側へ向けて(方向付けて)、第1の(一次)燃焼領域を充満させることを可能とする円錐形のフレアを有する本発明の一の実施の形態に従って構成された燃焼装置のライナの第1の部分を示す側面図(断面図)である。] 図2 [0034] 図3は、燃焼装置の第1の(一次)領域においてノズルの流れのパターン(流れ方)が空気のフローパターン(流れ方)を決定することを示すとともに、ライナの狭い部分における付加的な隔壁板を示す、ノズルの流れを案内する円錐形のフレアを有しないライナの他の実施の形態を示す側面図(断面図)である。] 図3 [0035] 図4は、ノズルの周囲にドーム型の旋回流れの発生部を組み込んで、ガスがライナの外側から第1の(一次)燃焼領域に進入できるように設けた、ライナのさらに他の実施の形態を示す側面図(断面図)である。] 図4 [0036] 図5は、ライナの出口/混合領域の実施の形態を示す簡略化された斜視図である。] 図5 [0037] 図6は、ライナから離れる高温のガスと、高温のガスを取り巻くように向けられる(方向付けられる)、より低温の排気ガスとを示す、混合ジオメトリ(幾何学的形状)の端部におけるバーナの軸に垂直な断面において陰影を付けた等温度線(コンタ)を含む、図5に示す簡略化されたライナの出口/混合領域の斜視図である。] 図5 図6 [0038] 図7は、燃焼ライナの下流側の端部において示す他の混合構成の簡略化された側面図(断面図)である。] 図7 [0039] 図8は、図7に示す混合構成の簡略化された斜視図である。] 図7 図8 [0040] 図9は、燃焼ライナの下流側の端部において示す他の混合構成の簡略化された側面図(断面図)である。] 図9 [0041] 図10は、図9に示す混合構成の流れの配向タブを示す斜視図である。] 図10 図9 [0042] 図11は、排気ガスが混合構成を通過した後の温度プロファイルの変化を示す、本発明による他の混合構成の簡略化された斜視図である。 図12は、排気ガスが混合構成を通過した後の温度プロファイルの変化を示す、本発明による他の混合構成の簡略化された斜視図である。 図13は、排気ガスが混合構成を通過した後の温度プロファイルの変化を示す、本発明による他の混合構成の簡略化された斜視図である。 図14は、排気ガスが混合構成を通過した後の温度プロファイルの変化を示す、本発明による他の混合構成の簡略化された斜視図である。] 図11 図12 図13 図14 [0043] 図15は、図11に示す混合構成を端面より見て示す図である。] 図11 図15 [0044] 本発明は、ある好ましい実施の形態と関連付けて説明されるが、それら実施の形態に限定する意図はない。反対に、意図するところは、全ての代替物、変形、および均等物を、特許請求の範囲に定義されているように本発明の精神と範囲の内に含まれるものとして、カバーすることである。] 実施例 [0045] 以上に簡潔に検討したように、また本発明の実施の形態の検討に関する文脈より、ディーゼル・パーティキュレート・フィルタ(DPF)がディーゼルエンジンの排気から粒子状物質をろ過するために排気出口の前または上流において、ディーゼルエンジンの排気流れの流路に取り付けられる。捕集された粒子状物質、例えば煤(すす)をDPFから除去するために、DPFの上流であって、エンジンからの排気の入口よりも下流側において、燃焼装置を用いることができる。エンジンの排気ガスは、排気出口を通じて外気に排出される前に、燃焼装置の開口部およびDPFを通過する。] [0046] 一般的な燃料燃焼式の燃焼装置において、燃料と空気とは、燃料バルブと空気バルブ、例えば電気制御されたソレノイドバルブ等を介して供給される。この燃料と空気との混合気は、次いで、そこに配置される一以上のスパークプラグによって点火される。点火コントローラは、エンジンマネージメントシステム(EMS)と通信可能としてもよく、エンジン速度センサ、スロットルポジションセンサ、背圧センサ等から、種々のエンジンおよびシステムの運転パラメータを受信してもよい。点火コントローラは、システム全体の異なる位置における温度を検出するように配置されたセンサから入力される排気温度も受信する。] [0047] 続いて、特に図面を参照すると、図1には、燃焼システム100の実施の形態の略図が示されている。この概略図では、説明の簡略化と本発明の実施の形態の発明に係る特徴の理解とを容易にするために、燃焼装置の多くの部品、例えば、燃料インジェクタ、点火源、センサ等は含まれていない。] 図1 [0048] この燃焼システム100は、典型的に、内側のライナ108が配置された外側のハウジング116(燃焼缶とも呼ばれる)を含む。エンジン(内燃機関)から出た排気ガスは、燃焼システム100に、特に排気の流入口112を通って内側のライナに流入する。] [0049] 排気の第1の部分は、排気の流入用の孔110を通って中央のライナ108の内部に流入する。周知のように、排気流れのこの部分は、燃焼システム100の内部で、火炎を生成するために用いられるか、少なくとも火炎によって加熱されて、燃焼システム100を通過して流れる排気の温度を上昇させ、下流にあるDPFまたは他の後処理装置(図示せず)における再生および/または後処理を補助する。ライナ108の内部を流れる排気流れのこの部分は、その結果として必然的に、相対的な意味で高温となる。] [0050] ライナ108に導入されない排気の第2の部分は、ライナ108の周囲を迂回して、環(アニュラス)114を通過する。環114は、内側のライナ108とハウジング116との間に形成されている。排気流れのこの外側の部分は、ライナ108の内部の燃焼には曝露されず、このため、ライナ108の内部の流れの部分よりも、相対的に低温である。] [0051] このように、排気流れ(ライナ108の内側の流れと、環114の内部の流れの両方から生成される)の完全な温度プロファイルは、高温の中核の部分と低温の半径方向における周辺の部分とから、実質的に半径方向において層状となる。しかし、既に述べたように、典型的には、下流側のDPFまたは他の後処理装置に流入する際に、排気ガスは全体として均一な温度プロファイルを有することが望ましい。このように、ライナ108は、ライナ108の内部を流れる高温の排気ガスと、環114を通過する低温の排気ガスとの混合を促進する混合構成(ミキシング・アレンジメント)105を含んでいる。] [0052] 開示する燃焼システム100を通過する排気流れの全体の概要に加えて、燃焼システム100のさらに詳細な作動、並びにその種々の特徴、部品、および部分について、検討する。] [0053] 説明を簡潔にするために、燃焼システム100を、3つの領域102,104、および106に分割する。一次領域102は、ライナ108に流入する排気ガスを加熱するための火炎を生成するために用いられる、微粒子化または気化された高速の気流を伴う燃料を生成する、ガスタービンエアブラスト型のノズル132(図2参照)、または他のノズル技術を用いている。図4に示すドーム型の旋回流れの発生部130が組み込まれると、このノズルは、同じ効果を得るために、ドーム型の旋回流れの発生部により発生された旋回流れと混合された噴霧燃料をもっぱら生成することができる。エアブラスト型のノズル132は、広範な流れの範囲にわたって、良好な燃料の微粒子化をおこなう性能を有する。エアブラスト型のノズル132の他の利点は、燃焼システム100の一次領域102に、大量の空気を導入できることである。ノズル132を介して導入された空気は、エアブラストノズル132を通過する空気の流量が燃料の流量(率)と比べて相対的に大きいために、好適に燃焼に用いることができる。ライナの孔110を通過する排気を綿密に調整する一方で、ノズルを介して調整された空気と燃料とを導入することにより、点火領域118における一次領域102の内部の空燃比を正確に制御することが可能となる。ノズル132はまた、加えられた空気を、燃料の微粒子化、熱保護、および一次領域102における適切なフローパターン(流れ方)の導入のために用いることにより、この空気を最適に用いることができる。エアブラスト型のノズル132のための空気は、補助的な供給源からも、エンジン排気自体からも供給可能である。] 図2 図4 [0054] 一次領域102のための一の主要な性能の判断基準は、空気のフローパターン(流れ方)である。一次領域102の端部においてラジウス部(丸め部)103(図1参照)等のジオメトリ(幾何学的形状)を組み込むことにより、一次領域102における旋回流れ型のノズルの空気の流れ、付加的なドーム型の旋回流れの発生部、ガスのフローパターン(流れ方)は、流れの再循環等による良好な混合、流れの分離、および安定したフローパターン(流れ方)を生成するために最適化することができる。特に、図2に示す実施の形態では、上流側(左側)に円錐状のフレア126を有し、ノズルの流れをライナ108に付着させて外側へ向かわせ、燃焼装置の第1の(一次)領域102に充満させる。図3に示す実施の形態では、ノズルの流れを導入するための円錐状のフレアを有しない。ノズルの空気の流れのパターン(流れ方)は、この燃焼装置の一次領域102における空気のフローパターン(流れ方)を決定する。この図において同様に示す付加的な隔壁体128もライナ108の狭い部分に設けることができる。図4に示す実施の形態では、ドーム型の旋回流れの発生部130をノズルの周囲に組み込んでいる。このドーム型の旋回流れの発生部は、ガスをライナ108の外側から一次領域102の内部へ導入することを可能とする。] 図1 図2 図3 図4 [0055] 本発明の実施の形態では、燃焼システム100の性能を向上するために、これらの設計方針を採用している。空気のフローパターン(流れ方)は、点火位置を排気ガスから隔離するように、設計的特徴によって形成される。エアブラストノズルはまた、燃料の噴霧を、点火の信頼性を補助するように、点火領域118の内部の位置に向ける(方向付ける)ことができる。] [0056] 他の実施の形態に含まれる他の特徴においては、燃焼システム100の一次領域102の端部において隔壁体128が有利となるように設けられる。この隔壁体128は、火炎の下流側の端部に配置されるという点で、他の火炎の定着(アンカ)のための構成とは異なる。この隔壁体128は、一次領域の壁のラジウス部(丸め部)103(図1参照)を延長するものとして、一次領域102における気流の向きをより直接的に制御するように機能する。この隔壁体128はまた、点火の信頼性を向上させるために一次領域102を排気ガスから分離するための補助をおこなうこともできる。] 図1 [0057] これらの設計的特徴の結果として、本実施の形態の一次領域102は、点火領域118を分離して、保護(ドーム型の旋回流れの発生部の設計も同様)、安定化および混合のための再循環、燃焼の混合の自律制御、および部品の保護のための低温作動モード(リッチ作動)を提供する。実施の形態ではまた、再循環のために下流側の端部において丸みが与えられて設けられており、加えて付加的な隔壁体および/または付加的なドーム型の旋回流れの発生部を含むことができる。この一次領域102は、中間領域104よりも小さく、いくつかの実施の形態では非対称に設けられた排気の流入口に対する保護部材を備えてもよい。] [0058] 図示される燃焼システム100の中間領域104には、他の後処理燃焼装置とは極めて異なった設計的特徴が、複数組み込まれている。他の設計からの主要な変更点は、この燃焼装置が、燃焼ライナ108のこの部分の主要部に、明らかに孔を設けていない点である。このライナ108はまた、燃焼システム100への(非直線的な流れの構成であるものと仮定して)排気の流入口112の近傍の側に、(他の設計と比較して)より多くの孔110を備えている。図に見られるように、排気ガスのすべてがライナ108を通って導入されるのではなく、いくらかの排気ガスは、ライナ108の周囲を流れることが可能である。この孔の構成は、均等な配置による構成または導入側から離れた位置により多くの孔を設ける構成よりも、排気ガスの導入のためには、より効果的な構成方法であることがわかる。温度の均一性と低排出物性能(エミッション性能)とが、中間領域104のこの構成によって向上する。] [0059] 中間領域104の他の態様は、それが排気の流入用の孔110を、一次領域102への排気の導入を阻止するような方法で設けるというものである。中間領域104はまた、大量の燃焼領域が一次領域102から中間領域104へ移動することを許容するようにも、設計されている。火炎は、一次領域102から中間領域104へ、完全に、または部分的に移動する。また、中間領域104には、無視できるほどの火炎しか移動しないようにも設けることができる。] [0060] 中間領域104および導入孔110の構成の結果、拡散/小規模化/乱流のバランスと、容積の混合とが提供される。良好な乱流と容積の混合とを達成する導入孔110の一の実装が、図示される。孔110の第1の列は、小さく設けられ、乱流と小規模の混合とをもたらす。孔110の第2の列は、より大きく設けられ、より大きな径の排気の噴流(ジェット)を中間領域104へ向けて生成することによって、より強度に容積の混合を生成する。] [0061] この中間領域104は、「頂部により多くの孔を設ける」アプローチ(取り組み)によって、均一な排気の導入と流れの混合とを提供する。それにより、中間領域の内部の流れは、過剰な排気の導入から保護され、低排出物性能(エミッション性能)のためには、部分的に限定されて排気が導入されることにより保護される。すなわち、中間領域104は、そのジオメトリ(幾何学的形状)によって、綿密に制御されたバイパス(迂回)の調整を提供する。その成分を適切に混合し、かつ火炎の移動を許容することにより、中間領域104では、排気中の酸素が減少して、化学理論量よりも酸素量が少ない状態で燃焼がおこなわれる。これは、孔110の構成を通じてこの中間領域104の頂部に導入される排気の正確な比率が提供されることによって達成される。] [0062] 燃焼システム100の他の特徴は、排気の流入口における拡散のためのジオメトリ(幾何学的形状)である。一次領域102の下流側の端部のラジウス部(丸め部)103(図1参照)は、一次領域の気流のパターンを補助するだけでなく、このテーパが、体積(流路断面積)を増大させて排気ガスの流れの圧力を回復する位置を設ける。このディフューザ(拡散部)134が設けられた位置で上昇した静圧は、排気の導入孔110を通じて流れの性能を改善する。排気の流入口からディフューザ134の位置までにおけるこのジオメトリ(幾何学的形状)の構成はまた、排気の導入孔110の背後に、より高い静圧のリザーバ(空気溜り)を設けることによって、燃焼システム100の全体的な圧力損失の最小化を補助する。] 図1 [0063] 上述のように、ライナ108の排気の導入孔110を通じて中間領域104に入らないエンジンの排気は、すべて燃焼システム100の環114に流入する。環114のジオメトリ(幾何学的形状)の構成は、以下にさらに詳しく検討するように、燃焼システム100の希釈領域106のために均一な流れを生成することを補助する。一の実施の形態においては、流れのバランスを取るために、環114にフィンが備えられる。環114はまた、ライナ108内の高温の燃焼を燃焼システムの壁面(ハウジング116)から熱的に隔離する機能を果たす。] [0064] 燃焼システム100を通過する総計した排気流れが、圧力損失にさらされる。燃焼装置の設計における圧力損失の発生に対して複数の構成が組み込まれる。第1の構成は、混合構成105として圧力損失が相対的に少ない混合ジオメトリ(幾何学的形状)120/124/122が、希釈領域106の流入口に組み込まれる構成であり、この結果、主な圧力損失の位置を、環114への流入口、および導入孔110の通過の位置とすることができる。第2の構成は、相対的に低制限(低抵抗)の環を組み込む構成であり、この結果、主な圧力損失の位置を、導入孔110、および希釈領域106の流入口とすることができる。すなわち、混合構成105を通過した時点での圧力損失が、ライナ108と導入孔110とを通過した時点での圧力損失と略等しくなるように設けられている。これは、ジオメトリ(幾何学的形状)的に離間されて設けられた混合構成によってもたらされる圧力損失が、燃焼領域における流れから独立し、それら(燃焼領域における流れ)に対して何らの恩恵も提供することがなく、その機能はもっぱら混合のために使用されるように設けられるという点で、他の設計とは異なっている。従って、導入孔110を通過するライナ108への排気の流入圧力は、下流の混合構成105のジオメトリ(幾何学的形状)を用いることで調整することができる。] [0065] 他の燃焼装置において、混合構成をライナから分離することは、両方の構成部品において、個別に連続した損失が強いられるものであり、これは、これらの燃焼装置においては、総計してより多くの圧力損失が強いられる結果をもたらす。言い換えれば、第1の圧力損失は、排気ガスをライナへ向ける(方向付ける)ことに起因して生じる一方で、第2の圧力損失は、混合構成を流れが通過することに起因して生じる。] [0066] これらの特徴をすべて一体型のライナ108の単一のジオメトリ(幾何学的形状)に組み込むことにより、流れの配分の制御において、貫通する噴流(ジェット)の生成と燃焼のための流れの混合とが、効率的な高温/低温の混合をおこなう単一の圧力損失(要因)により好適におこなわれるために、同様の状態を得るために、複数回にわたる圧力損失を一連して用いなければならない他の設計と比較して全体として圧力損失を少なくすることができる。] [0067] 希釈領域106は、ライナ108の内側を通過する高温のガスが、ライナ108の周囲の環114を通過して迂回した相対的に低温のエンジンの排気と混合される、燃焼システム100における配置において設けられる。本発明の実施の形態では、希釈領域106のために、以下に検討するような、他の排気の後処理燃焼装置とは極めて異なるジオメトリ(幾何学的形状)を組み込んでいる。一の実施の形態を図5に示す。] 図5 [0068] 高温および低温の流れが、多重に設けられた交互に配置されたパターン(繰り返しの形状)に向けられて、図6に示すような高効率の混合を生成する。図6には、混合ジオメトリ(幾何学的形状)の端部におけるバーナの軸と垂直に取られた断面上における等温度線(コンタ)が示されている。等温度線150は、ライナ108から流出した高温の排気ガスを示している。等温度線152は、高温のガスを取り巻くよう向けられた(方向付けられた)、より低温の排気ガスを示している。高温の流れと低温の流れとの間の境界領域(表面領域)は、混合処理を迅速におこなうために最大化される。低温の流れは、このジオメトリ(幾何学的形状)によって、ライナ108の外径方向から流れ面120に付着し、これに沿って半径方向における内側方向へ燃焼装置の中心部まで向けられる(方向付けられる)。付加的な面122は、2つの目的で設けられる。付加的な面122は流れ面120に沿って低温のガスが流入するための再循環領域を形成する一方で、ライナ108を通った高温のガスが、低温の流れに囲まれた状態で表面(流れ面)124の下流側へ流出するように作用する。この設計の主な利点は、混合を生成するために要する圧力損失が最小限で済む点である。この流れは、ライナ108のジオメトリ(幾何学的形状)の外形120/122/124に沿う流れ(全体として層流)であり、従来の設計による貫通して流れる噴流(ジェット)あるいは機構に関連する他の高圧には依存しない。この混合の設計では、混合を生成するために、より大きな圧力損失が強いられることがなく、性能は排気流れの流量には依存しない。この混合の方式は、エンジンの運転のより広い範囲にわたって、従来の乱流生成方式の混合装置を用いた場合と比べて、より少ない圧力損失で、より良い性能を発揮する。] 図6 [0069] この希釈領域106の混合のためのジオメトリ(幾何学的形状)によって得られる他の利点は、流れの配分を調整する能力である。混合構成上のタブまたはフィン120/124は、必ずしもすべて同じ大きさのジオメトリ(幾何学的形状)、方向、または間隔に設けられなくてもよい。それらは、環状の流れ場におけるアンバランス(不均衡)や、混合のためのジオメトリ(幾何学的形状)よりも上流側における排気ガスの温度プロファイルのアンバランスを改善するように組み込まれてもよい。一般的に、排気ガスの温度プロファイルは、半径方向における外側に位置する低温の流れと半径方向における内側に位置する高温の流れとが、概して同心(同軸)となる。混合装置の局所的な挙動を調整するこの能力により、混合のためのジオメトリ(幾何学的形状)よりも上流側における排気流れの温度プロファイルのばらつきに起因するような出口温度における局所的なばらつきが軽減される。] [0070] 希釈領域106のジオメトリ(幾何学的形状)により、また、大量の環114を通過した相対的に低温の排気が中間領域104から排出される燃焼による生成物とともに素早く混合されることにより、消炎作用がもたらされる。バーナの端部における素早い消炎は、燃料リッチな作動条件での燃焼状態、または火炎が通常よりも下流にまで延在する他の状況の下においても、排気システムにおける下流側の構成部品にまで火炎が衝突してしまうことを防ぐことができる。この消炎作用は、近接した構成の組合せの付加的な選択や、システム全長およびパッケージング要件の短縮(圧縮)可能化を提供する。] [0071] 図7および図8は、本発明の教示に従って効果的な混合を提供する他の実施の形態の混合構成205を示す略図である。この混合構成205は、希釈領域の一部を形成し、既に説明したように中間領域の下流側に配置することができる。] 図7 図8 [0072] まず図7を参照すると、図5に示す構成の混合ジオメトリ(幾何学的形状)と同様に、混合構成205は、環214からのより低温の流れを半径方向における内側方向へ向ける(方向付ける)一方で、内側のライナ208からのより高温の流れを、半径方向における外側方向へ向けさせ(方向付け)、または引き寄せ、内側のライナ208によって分離された低温の流れと高温の流れとの混合を実現する。この実施の形態において、このジオメトリ(幾何学的形状)は、混合構成205の全体の圧力損失を軽減するように燃焼装置の流れの軸に対して略垂直な中央の表面122を有しない。さらに、このことにより、中央の表面を、燃焼装置の中央を通過して流れる高温の排気ガスがもたらす大量の熱に直接的に曝露する事態が避けられることから、最終的には混合構成の全体的な故障の可能性を減らすことができる。] 図5 図7 [0073] 図7に示す断面図を参照すると、この実施の形態では、さらに、内側方向に向けて延在し、かつ矢印243により示す(ここでも「高温の排気ガス243」として参照される)ライナ208内部の高温の排気流れと直接的に衝突する、タブまたは他のジオメトリ(幾何学的形状)は設けられていない。] 図7 [0074] 混合構成205は、ライナ208の出口端部236の近傍に形成される。しかし、他の実施の形態において、混合構成205は別個の部品として形成され、ライナ208に結合されてもよく、また出口端部236よりも、わずかに上流側または下流側に配置されてもよい。] [0075] 図示のように、混合構成205は、環214からの矢印241によって示される低温の流れ(ここでも「低温の排気ガス241」として参照する)と内側のライナ208からの高温の流れ243とを方向付けるための、内側に向けられた複数のタブ223と、外側に向けられた複数のタブ224(全体的に組み合わせて「タブ223、224」として参照する)とを含む。タブ223、224は、排気の流れの全体を異なる種々の部分に分割し、次いでこれらの部分を方向付けるとともに再編成し、それによって向上した混合と熱伝達とを実現して、燃焼装置の缶216を通過して流れる排気の温度プロファイルを、望ましい状態に調整する。排気ガスの組み合わされた温度プロファイルは、ライナ208の内側を通過して流れる高温の排気ガス243の流れに加えて、環214を通過して流れる低温の排気ガス241の流れによって定まる。典型的に、この温度プロファイルは高温の中核の部分(ライナ208の内側の流れによって提供される)と、低温の周辺部分(環214を通過する流れによって提供される)とを有する。この典型的な温度プロファイルを、簡略化した形で、図11に示す。典型的には、(後に詳述するように、)この混合構成205は、高温の流れと低温の流れとを、角度方向において交互に配置することとなる。] 図11 [0076] 図示の実施の形態において、内向きのタブ223は、内向きのタブ223が概ね流路の軸(流れの軸)239と接線が一致するように設けられた入口端部238を、有している。この内向きのタブ223は、内向きのタブが軸239に対して相対的に斜めに設けられた出口端部240で終端している。この入口端部238は、出口端部240の上流側に設けられている。典型的には、出口端部240は軸239に対して相対的に斜めに設けられており、すなわち、平行でも垂直でもないように設けられているが、これは、すべての実施の形態において必須であるわけではない。好適な実施の形態においては、入口端部238は軸239に対して相対的に、約0度から約20度までの間の角度を有するように設けられる。出口端部240は、約30度から約70度までの間の角度を有するように、好適な実施の形態において設けられている。他のタブの構成とプロファイルとは、以下にさらに詳細に検討するように、所望の混合を実現するために混合構成205を調整するように組み込まれてもよい。] [0077] 概して湾曲した部分は、入口端部238と出口端部240との間で遷移している。この湾曲部分が出口端部240に近づくにつれて、湾曲部分は平面形状となり始める。湾曲部分は、入口端部238が出口端部240に対して半径方向における外側に位置するように半径方向における外側の方向を向いて見た場合に、概して凹面形状に設けられている。湾曲部分は、それにより方向付けられる流れにおける乱流を抑制して、流れを軸239に対して平行な方向から半径方向における内側方向に向けて斜めの方向へ、滑らかに遷移させることによって、圧力損失を抑制する。湾曲部分は、互いに接続された、複数の略平坦な部分により形成されてもよい。しかしながら、内向きのタブ223の内側/上流側の表面に沿う低温の排気ガス241の滑らかな流れに対して抵抗となる、異なる部分の接続が障害物となることから、最小量の圧力損失を実現するために、かかる構成は避けることが望ましい。] [0078] この実施の形態において、簡略化された形で矢印241として示す環214を通過する低温の排気ガス241は、半径方向において内向きに設けられたタブ223によって、半径方向における内側方向へ向けられる(方向付けられる)。図示の構成において、内向きのタブ223は、内側のライナ208の内側の表面を超えて半径方向における内側までは延在しない。しかし、他の実施の形態においては、出口端部はライナ208の内側の表面よりも半径方向における内側に位置するものとしてもよい。他の方法によれば、内向きのタブ223が矢印243として簡略化された形で図示される高温の排気ガスの流れに直接的にさらされてしまうこととなるようにライナ208を超えて半径方向における内側へ延在する場合にも、本発明の利点として、環214から流れる低温の排気ガス241により、高温の排気ガス243が内向きのタブ223に直接的に衝突する事態を防ぐように助けることができる。低温の排気ガス241は、品質をより抑えた素材やより薄肉に設けられたタブが使用できるように、内向きのタブ223への熱伝達を抑制する緩衝材として機能する。これはまた、板(混合ジオメトリ(流れ面))120を組み込む前述の実施の形態においても、大きな利点をもたらす。] [0079] 半径方向における内側方向に向けられる(方向付けられる)低温の排気ガス241は、中央の高温の排気ガス243の部分と入れ替わり、さらに、また、この高温の排気ガス243の一部と混合する。] [0080] 外向きのタブ224は、外向きのタブ224が概ね流路の軸(流れの軸)239と接線が一致するように設けられた入口端部242を有する。外向きのタブ224は、軸239に対して相対的に斜めに設けられた出口端部244で終端している。湾曲した部分は、入口端部242と出口端部244との間で遷移している。湾曲部分は出口端部244に近づくにつれて、平面形状となり始める。外向きのタブ224は、下流側に向かうにつれて、外向きのタブ224がさらに中心軸239から半径方向における外側方向へ向けて次第に大きく離れるように、全体として外側へ向く凹面形状に設けられる。望ましい下流の温度プロファイル、所望される混合、および混合構成205を通過する際の全体的な圧力損失に応じて、出口端部244は、燃焼缶216の内側の表面246に接触するように設けても、接触しないように設けてもよい。図示の実施の形態において、出口端部244は、缶216の内側の表面246よりも半径方向における内側に離間されて設けられている。] [0081] 低温の排気ガス241は、外向きのタブ224の上流側の表面247に、直接的に衝突する。これにより、低温の排気ガス241の一部は、隣接する内向きのタブ223へ向けて横方向に、すなわち軸239に対して相対的に概して角度を有して迂回する(この流れを示す図7および図8において、241aとして識別される矢印参照)。これは、タブ223、224よりもわずかに下流側を流れる低温の排気ガス241に、高温の排気ガス243が半径方向における外側方向へ引き込まれてもよい領域または空間を生成することを補助する。さらに、外向きのタブ224は、高温の排気ガス243を半径方向における外側方向へ向ける(方向付ける)か、あるいは引き込むように補助する。より詳細には、高温の排気ガス243は、図7において高温の排気ガス243cとしてより詳細に示すように、それが混合構成205を通過する際に、下流側の表面248、すなわち、半径方向における内側方向に面するとともに、概して下流側を向いて設けられる表面に流れが付着して、半径方向における外側方向へ、混合構成205が備えられていなければ低温の排気ガス241によって占められていた場所へ、向けられる(方向付けられる)。] 図7 図8 [0082] さらに、外向きのタブ224によって角度を有して/横方向に向けられた(方向付けられた)排気ガス241の一部は、隣接する内向きのタブ223によって半径方向における内側方向へ向けられた(方向付けられた)、低温の排気ガス241の隣接する部分に混入される。この構成は、図8に示す矢印241dによって示されている。代替として、低温の排気ガス241の一部も、横方向へ向けられ(方向付けられ)、すなわち角度を有して、図8に示す矢印241aとして示す隣接する内向きのタブ223の背後かつ下流側へ向けられる(方向付けられる)。] 図8 [0083] このようにして、低温の排気ガス241を横方向へ向ける(方向付ける)ことと、高温の排気ガス243を半径方向において引き込むこととによって、缶216の内部で、組み合わされた排気ガスの流れの異なる部分(低温の排気ガス241および高温の排気ガス243)の種々の分流(セグメント)の再編成がおこなわれる。この高温の排気ガス243と低温の排気ガス241との分流を再編成することによって、高温の排気ガス243は、もはや初期のような中央の位置に無く(概要を示す図12を参照)、一方で、低温の排気ガス241は、もはや高温の排気ガス243を取り巻く環を形成していない。このように、異なる温度の排気ガスの流れ241と243との間の境界面積(表面積)が増加して、さらに素早い熱伝達と温度の分配とがおこなわれ、軸239に沿って混合構成205よりも下流側において、所定の軸方向の位置におけるさらに均一な温度プロファイルの生成がおこなわれる。] 図12 [0084] 図7に示す実施の形態において、内側に向けられたタブ223と外側に向けられたタブ224とは、一方は半径方向における内側方向を向いて設けられ(内側に向けられたタブ223)、他方は半径方向における外側方向を向いて設けられている(外側に向けられたタブ224)ことを除けば、同様のプロファイルを有し、実質的に互いに鏡面対称に設けられている。入口端部238および242は、互いに実質的に軸方向において並ぶように設けられており、出口端部240および244も、同様に互いに実質的に軸方向において並ぶように設けられている。入口端部238および242は、双方を環214により低温の排気ガス241が流体連通するように設けられている。] 図7 [0085] 本実施の形態においては、タブ223と224とは一体に設けられた素材により形成されており、従って、隣接する一組のタブ223と224とはその間を結ぶ中間のC型のコネクタ部分によって接続されている。しかしながら、他の実施の形態においては、タブ223と224とは、タブ223と224との各々が、後に隣接される逆向きのタブ223と224とが接続されて設けられる個別のものとして、互いに独立して形成されてもよい。代替として、タブ223および224は部分的に単一片で形成されていてもよい。例えば、内側に向けられたタブ223の全てが第1の単一片で形成されるとともに、外側に向けられたタブ224の全てが第2の単一片で形成されてもよい。代替として、混合構成205は、内向きのタブ223と外向きのタブ224との双方を有する複数の角度が設けられた部分から形成されるものとしてもよい。] [0086] 排気流れの温度プロファイルが、例えば図12に示すように、実質的に半径方向において層状であり、角度方向においては均一である場合には、混合構成205よりもわずかに上流側の軸239に実質的に垂直な面から見たときに、混合構成205は、実質的に角度方向においては十分に均一に設けられており、すなわち、内向きのタブ223の全ては実質的に同一に設けられており、外向きタブ224の全ては実質的に同一に設けられているものということができる。このように設けることにより、軸239に対する角度方向において、さらに均一な混合がおこなわれるものといえる。] 図12 [0087] しかしながら、この排気流れの温度プロファイルが、半径方向または角度方向において均一でない場合には、タブ223および224は、より均一な温度プロファイルを提供するために設けられる混合構成205よりも下流側における結果的な温度プロファイルを調整することができる。例えば、温度プロファイルが垂直方向における上方側にずれた高温の核を有しているならば、タブ223および224は、軸239の下方側の環214の一部から上方に向けて、さらに低温の排気ガス241を向ける(方向付ける)とともに、軸239の上方に位置する環214の一部から低温の排気ガス241が、軸239に向けて下降して流れることを防ぐように調整することができる。同様に、タブ223および224は、軸239の上方側に位置するライナ208の内部から流出する高温の排気ガス243が、より少なくしか上方へ向けて引き出されないように調整する一方で、軸239の下方から流出する高温の排気ガス243が、より多く下方へ引き出されるように調整することができる。ここで、上方並びに下方という用語は、一例を挙げるためにのみ使用され、すべての実施の形態においては必ずしも必要とされない相対的な用語であり、図面を参照しておこなう説明においてのみ用いられることに留意されたい。] [0088] このタブ223および224は、排気の流れを混合構成205の下流側における所望の下流の温度プロファイルのために変化することを助けるように種々の手法によって調整することができる。例えば、タブ223および224は、より幅広に(すなわち、角度方向において大きな寸法を有するように)設けられてもよく、またそれらが、より高く(すなわち、半径方向において大きな寸法を有するように)設けられてもよい。加えて、入口端部と出口端部との間の部分に設けられるテーパにより、半径方向における流れをより多く、または少なく配向させるように調整するものとしてもよい。] [0089] さらに、内向きのタブ223の軸方向における配置は、排気ガスの量を調整するために、隣接するタブ223と224との流れが混合されるか、または、排気ガスが上流側において混合編成205に向けて流れたように、通過した後の混合構成205よりも下流側の流れにおいて同様の半径方向における位置を引き続き下流へ流れることが許容されるかどうかについて、外向きのタブ224に対して調整することができる。例えば、図7を参照すると、外向きのタブ224が制限の範囲内において軸方向における上流側へ移動する場合には、より多くの低温の排気ガス241が、隣接する内向きのタブ223によって画成される流路へ取り込まれることが可能となり、それによって、半径方向における内側方向へ向けられる(方向付けられる)ことが可能となる。これは、低温の排気ガス241が、より下流側の内向きのタブ223において横方向に向けられる(方向付けられる)のではなく、内向きのタブ223の上流側において近隣する(外向きのタブ224の)位置において横方向に向けられる(方向付けられる)ことによる。これにより、複合された排気流れの中核の部分の冷却が、より強くおこなわれる。さらに、タブ223および224の下流側においては、高温の排気ガス243が半径方向における外側方向へ向けて流れるための大きな領域が生成されて、高温の排気ガス243がさらに大量に半径方向における外側方向へ向けて流れることが可能となる。] 図7 [0090] しかしながら、内向きのタブ223が、半径方向における外向きのタブ224に対して相対的に、軸方向において離間され過ぎて設けられている場合には、高温の排気ガス243と低温の排気ガス241との(およびその逆の)配置が相互に連携する(程度の)限られた混合が生じるのみで、タブ223および224は、排気流れにおいて、混合する能力が減少されて抵抗としてしか機能しなくなることに留意されたい。例えば、半径方向における外向きのタブが、半径方向における内向きのタブから上流側に離れ過ぎている場合には、低温の排気ガス241が外向きのタブ224の上流側の表面から横方向に離れる際に、流れは、半径方向における内向きのタブ223にまで軸方向において到達する前に、外向きのタブ224の背後において逆方向に戻るだけとなって、内向きのタブ223によって半径方向における内側方向に向けられた(方向付けられた)流れに取り込まれないこととなる。反対に、外向きのタブ224が、内向きのタブ223から下流側に離れ過ぎていても、同じことが起こることとなる。] [0091] 以下にさらに詳細に示すように、タブ223、224の形状および外形は、スコップのようにさらに積極的に作用して、対応する排気ガスの流れを方向付けるように機能するよう変更することができる。] [0092] 図9は、本発明の教示に従う混合構成305の、さらに他の実施の形態を示す。この実施の形態は、上述の通り検討した混合構成205と、本質的には同様のものである。] 図9 [0093] しかし、この実施の形態では、外向きのタブ324が上述の実施の形態と本質的に同じジオメトリ(幾何学的形状)を有する一方で、内向きのタブ323は、わずかに異なるジオメトリ(幾何学的形状)を有している。図10に、内向きのタブの斜視図を示す。] 図10 [0094] 内向きのタブ323は、スコップ形状に設けられ、上述の実施の形態における内向きのタブよりも、非常に積極的に設けられている。この内向きのタブ323の上流側の表面347は、2つの寸法方向において凹面に設けられている。] [0095] 上述の実施の形態と同様に、内向きのタブ323は、入口端部338から出口端部340まで延在している。この入口端部338は、出口端部340に対して相対的に、半径方向における外側に位置している。さらに、入口端部338は概して環314を通過する流れおよび流れの軸339と接線方向が一致するように設けられる一方で、出口端部340は概して環314およびライナ308を通過する流れ、ひいては軸339に対して斜めに設けられる。] [0096] まず図10を参照すると、この実施の形態においては、内向きタブの323は、タブ323の底部363の接線に対して略垂直に延在して設けられた内側に向けて突出する翼部360と362とを有している。翼部360と362とは、内向きのタブ323の横方向において対向する端部364および366を画成する。翼部360および362は、凹部領域373、または横方向において対向する端部364と366との間において角度が設けられて配置され、上流側の方向に対して開口して、対応する排気ガスの流れが下流側の方向に移動する際に、これを受け止めて捕集する、トラフ形状を形成する。この実施の形態においては、翼部360、362およびトラフまたはスコップ形状の構成により、内向きのタブ323は、環314を通過する低温の排気ガス341を、より積極的にすくい、または捕集して、半径方向における内側方向へ向かう低温の排気ガス341の量を増大させる。翼部360および362は、内向きのタブ323によってすくわれ、または捕集された低温の排気ガス341が角度を有して横滑りして、内向きのタブ323から離れること、すなわち、上流側の表面347から横方向に外れることを防止して、低温の排気ガス341がさらに完全に半径方向における内側方向へ、中心軸339へ向かうように作用する。] 図10 [0097] 内向きのタブは、角度方向において概して凹に設けられる一方で、上流側の表面347は、角度方向において略平らな複数の表面により形成することができる。翼部360および362によって画成される上流側の表面347の部分は、横方向において対向する端部364および366と底部363との間において略平らに設けられる。さらに、底部363によって画成される表面347の部分は、略平らに設けられ、翼部360と362との間において中心軸339に対して大きな角度が設けられた曲面状には形成されない。] [0098] さらに、この実施の形態における入口端部338は、出口端部340の幅よりも(角度方向において)広い幅を有している。] [0099] 同様に、内向きのタブ323の底部363は、入口端部338に近づくにつれて、出口端部340に対して相対的に広い幅を有するように傾向を有して設けられている。] [0100] 翼部360および362は、底部363の上流側の端部から上流側に向けて延在する上流側の部分375および377を含む。これらの上流側の部分は、内向きのタブを燃焼装置の缶の内部に取り付けることができる他、より多くの排気ガスを取り込むことを助けるために利用可能である。] [0101] 翼部360および362を含むこと、およびこれらを変更することが、本発明による混合構成の混合可能容量を、さらに微調整するための方法である。翼部360および362を含むことにより、排気ガスの流量が低いときに、タブによって排気ガスの流れを方向付けることの補助に役立つ。これにより、広範囲の排気ガスの流量にわたって優れた作動特性を有する混合構成305が、提供される。] [0102] 加えて、内向きのタブ323は、内向きのタブ323を出口端部340が高温の排気ガス343と流れの同列上に並ぶように、ライナ308の内側の表面346を超えて半径方向における内側へ延長することにより、より積極的な構成として設けられている。上述したように、内向きのタブ323によって、すくわれ、または捕らえられた環314から流れる低温の排気ガス341は、ライナ308の内部を流れる高温の排気ガス343が上流側の表面347に直接的に衝突することを防いで、内向きのタブ323を、高温の排気ガス343からの過剰な熱伝達によるダメージから保護する緩衝材として機能する。] [0103] 他の実施の形態においては、外向きのタブにおいても同様に、流れの分配の要求に応じて、スコップ状のジオメトリ(幾何学的形状)を採用することができる。] [0104] 実施の形態では、上述の実施の形態における外向きのタブ224において、凸面に設けられた上流側の表面、すなわち、低温の排気ガスが直接的に衝突する表面を有する外向きのタブを設けてもよい。この構成は、開示される外向きのタブにより生じる圧力損失を抑制するための補助として用いることができる。これにより、外向きのタブは、流路に配置される鈍角の障害物として作用する場合よりもさらに容易に、低温の排気流れを相対的に横方向に(すなわち、角度を有して隣接するタブに向けて)流れを方向付けることが可能となる。] [0105] 多様なタブのジオメトリ(幾何学的形状)のモデル化と実験とにより、排気流れの温度プロファイルを略反転させることさえも可能とできることが、実際に示された。より詳細には、流れの半径方向における内側の部分よりも高い温度の範囲を有する、半径方向における外側の環状の部分を有する温度プロファイルを生成することができる。これは、特定の状況においては、大きな利点と成り得る。一般的に、DPF(ディーゼル・パーティキュレート・フィルタ)等の下流側の装置は、DPFの半径方向における外側の部分が、半径方向における内側の部分よりも速く好適に冷却する傾向を有して、熱を半径方向における外側方向に放出する。このように、半径方向における内側の部分よりも半径方向における外側の部分において、より高い温度の排気ガスが流入する場合には、DPFの全体を通じてより均一な温度プロファイルを維持することができる。この反転した温度プロファイルについては、さらなる実施の形態と関連付けて、以下でさらに完全に記述するが、ジオメトリ(幾何学的形状)の設計によっては、これは上述の設計にも組み込むことができる。] [0106] 上述の実施の形態において詳細には開示されていないが、以降の実施の形態において示されるように、外向きのタブを、内向きのタブ323と同様のタブと入れ替えて、高温の排気ガスのさらに積極的な方向付けを提供することが可能である。さらに、上述の外向きのタブにおいては、高温の排気ガスの流れ243および343の内部に直接的に配置される出口端部を含む構成は示されていないが、他の実施の形態においては、かかる構成を組み込むことができる。これにより、さらに非常に積極的な混合構成が提供される。しかしながら、より高い温度の排気ガスにより、これらのタブには、上流側の表面に沿って流れる低温の排気ガスによる緩衝が無いために、高温の排気ガスが上流側の表面に直接的に衝突する際のより優れた耐熱性が求められる。] [0107] 図11、図12、および図15は、本発明の教示による混合構成405のさらなる実施の形態を示す。この混合構成405は、上述の混合構成、または燃焼装置の構成を用いないその他の排気ガスの流路の構成のような、燃焼装置の構成の環境において用いられてもよいが、さらに均一な温度プロファイル、または低圧での混合を提供するために用いられることが望ましい。] 図11 図12 図15 [0108] 混合構成405も同様に、排気ガスの流れの異なる部分の分流(セグメント)を再編成して、中央の、典型的には高温の部分を、半径方向における外側の、典型的には相対的に低温の部分と入れ替えて、混合および典型的には熱伝達と、下流側における流れのより均一な断面プロファイルを生成することができるように作用する、低圧用の混合構成として機能する。同様に、混合構成としては、分流化された部分を再編成して角度方向において交互に配置することによって流れの再編成をおこなうだけであるため、混合構成405にわたって、限られた圧力損失が生じるだけである。] [0109] この混合構成は、排気流れの第1の部分が通る内部流路410を画成する。典型的には、排気流れの第1の部分は、矢印443によって概略が示される、始めに上流側における温度プロファイルの領域490によって生成される半径方向における内側の中央部分である。既に検討したように、典型的にこの半径方向における内側の流れは、最も高い温度を有する。排気流れの第2の部分は、矢印441で示されるように、外側を通って混合構成405に到達する。この排気流れは典型的には、領域490の半径方向における外側に位置して、高温の排気ガスの周囲を取り囲む分流494によって識別される、低温の排気ガス441である。] [0110] 混合構成405は、低温の排気ガス441と高温の排気ガス443とを異なる分流に半径方向および角度方向において再編成する、流れの軸439に沿う軸方向における断面の形状が連続的に変化する複数の脚部412を有している。さらに詳細には、混合構成405は、全体的には環状であって、同軸における内側の部分および外側の部分からなる流れを、流れが流路(内部流路)410を通って軸方向へ混合構成405の始まりから混合構成405の終わりへ向けて下流側へ通過する際に、複数の角度方向における分流へと実質的に分割する。角度方向における分流は、概して高温の角度方向における分流と、概して低温の角度方向における分流とが、混合構成405よりも下流側において角度方向において交互に配置されるように設けられる。] [0111] 図11および図12は、排気ガスが、燃焼または排気システムの排気管のような代替の構成である缶416によって画成される経路を流れて通過する際の、排気ガスの相対的な温度プロファイルを示す概略図(温度プロファイル)である。異なる相対的な温度の領域を、点描を用いて示している。概して離散化した温度の部分または領域を示すが、これは単に説明のためだけに示すものであり、種々の領域は、それほど明確に定義され、他の領域に対する遷移を有するものではないということは理解されるであろう。より高い温度の領域はより濃い点描を用いて、より低い温度の領域はより薄い点描を用いて、それぞれ示されている。さらに、温度プロファイルは、よりよい理解と本発明の作用の説明とのために簡略化された形態で示される温度プロファイルを表わしただけのものに過ぎない。] 図11 図12 [0112] このように、混合構成405の上流側における温度プロファイル(上流側)は、高温の中央部分490、中間部分492、および低温で環状の周辺部分494を有している。] [0113] 望ましくは、脚部412は、混合構成405を貫通する内側の流路410が、実質的に一定の断面積を維持するように構成される。同様に、混合構成405の外側の表面456と、混合構成405が取り付けられる缶416の内側の表面446との間に画成される外側の流域は、実質的に一定の混合構成405の全長を維持するように設けられる。これにより、混合構成405を通過する際の圧力損失の量を最小限に抑えるように設け、内側および外側の排気ガスの流れ441および443の両方の実質的な圧縮を防止する。] [0114] このようにして、混合構成405が低温の排気ガス441と高温の排気ガス443とを、概して同心円状に/半径方向において層状となった部分から、複数の角度方向における分流へと再編成し、この高温の排気ガス443と低温の排気ガス441との間の境界面積(表面積)が、これらの間での熱伝達と混合とを、最小限の圧力損失において増大する。] [0115] 図11および図12に示すように、混合構成405から下流側における温度プロファイル(下流側)は、混合構成405の角度方向において交互に配置する作用によって温度プロファイルが角度方向において層状となるように、複数の略角度方向における分流を有する。より詳細には、参照符号496で示す4つの低温の分流と、参照符号498で示す4つの相対的に、より高温の分流とが存在する。低温の分流496は、最も典型的には角度方向において谷部466に沿って隣接する脚部412との間において整列する一方で、より高温の分流498は、脚部412に沿って角度方向において整列する。] 図11 図12 [0116] 混合構成405の長手方向に沿って入口から出口まで、一定の断面積を有することが望ましいが、他の実施の形態においては、排気流れの多様な部分を再編成する作用を調整するように断面積に関して他の設計をおこなうものとしてもよい。上述の実施の形態においては回転対称として示したが、混合構成405は、上流側の排気ガスの流れの温度プロファイルに応じて、出口または流れの軸439に対して相対的に入口におけるオフセットを有していてもよい。入口は、本来的に円形である必要はなく、混合構成405の上流側における排気流れの特定の温度プロファイルの形状により近い形状として設けることができる。] [0117] 開示される実施の形態においては、隣接する脚部412が、この間の谷部466を画成するように設けられている。谷部466の底部468は、入口から出口へ、下流側へ向かうにつれて、半径方向における内側方向へ向けてテーパした形状として設けられている。底部468はまた、図示のように、下流側へ向かうにつれて、内側に凹状に設けられたプロファイルから外側に凹状に設けられたプロファイルへと遷移して設けられている。これにより、角度方向におけるより高温の分流498をさらに完全に画成するように、高温の排気ガス443を半径方向における外側方向へ、かつ角度方向における脚部412の間の領域に強制的に遷移させる傾向を有することができる。] [0118] この脚部412は、カバー部474の両側に、カバー部474と底部468との間に延在する2つの側壁470および472を有している。カバー部は、混合構成405を通過して下流側へ移動するにつれて、脚部412の内部の流路410を半径方向における外側方向へ引き伸ばすように、下流側の方向へ移動するにつれて半径方向における外側方向へテーパした形状として設けられている。さらに、側壁470および472は、下流側の方向へ移動するにつれて半径方向における内側方向へ拡張しながら延在し、互いに向かい合う方向に向けてテーパした形状として設けられている。] [0119] 混合構成405の入口端部は、図示された実施の形態では、概して円形に設けられているのに対し、出口端部は概して4つの脚部412を有する十字形に設けられている。しかしながら、4つを超える脚部412を有する他の形状も、さらなる角度方向における温度の分流を生成するために、用いることができる。] [0120] 一般に、本発明の実施の形態による混合構成は、排気流れの異なる部分を平均的に半径方向において分配して調整するように機能する。さらに詳細には、混合構成を通過して下流側へ移動するにつれて、排気流れの内側の部分(典型的に高温の部分)は、内側の排気流れをより多く半径方向における外側方向へと遷移させることによって半径方向における外側方向へと遷移した半径方向における平均的な分配を有することとなる一方で、排気流れの外側の部分(典型的に低温の部分)は、外側の排気流れをより多く半径方向における内側方向へと遷移させることによって半径方向における内側へと遷移した半径方向における平均的な分配を有することとなる。さらに、この混合構成は、半径方向における層状の流れを、角度方向における分割された層状へと変化された流れに再編成する。] [0121] 図13および図14は、本発明に基づく混合構成505のさらに他の実施の形態を示している。この混合構成は、上述の実施の形態におけるタブ323と実質的に同様の、内向きのタブ523および外向きのタブ524を含む。内向きのタブ523は、半径方向における外側の低温の排気ガス541を半径方向における内側方向へ向ける(方向付ける)一方で、外向きのタブ524は、半径方向における内側の高温の排気ガス543を半径方向における外側方向へ向ける(方向付ける)。] 図13 図14 [0122] 内向きのタブ523は、入口端部538と出口端部540とを有する。タブ523は、入口端部538と出口端部540との間で半径方向における内側方向へ向けて遷移する、湾曲した流路において延在する。しかしながら、図10を参照して述べたように、これらのタイプのタブはまた、流れの軸539に対して角度を有する凹状に設けられている。これらのタブはまた、図10に示すタブに関して検討した翼部と実質的に同一の翼部を含む。] 図10 [0123] 図13は、低温の排気ガス541の一部が内向きのタブ523によって直接的に捕集され、内向きのタブ523によって画成される凹部の内部を流れて、半径方向における内側方向へ向けられる(方向付けられる)ことを示している。さらに、低温の排気ガスの一部は、内向きのタブの背後において角度方向、すなわち、横方向へ向けられて(方向付けられて)、内向きのタブ523の背面に流れが付着し、同様に半径方向における内側方向へ向けられる(方向付けられる)。] 図13 [0124] 外向きのタブ524は、内向きのタブ523と実質的に同様であるが、半径方向における内側の高温の排気ガス543を、矢印543で示されるように、半径方向における外側方向へ直接的に方向付けるように向けられている。さらに、直接的には整列されて設けられず、このため、外向きのタブ524に直接的に捕集される内側の高温の排気ガス543の一部は、外向きのタブ524の背面に流れが付着し、半径方向における外側方向へ向けられる(方向付けられる)。] [0125] 外向きのタブ524は、入口端部542から出口端部544まで延在する。さらに、内向きのタブ523と同様に、入口端部542は流れの軸539に沿う排気流れと実質的に接線方向が一致するように設けられる一方で、出口端部544は実質的に斜めに設けられ、望ましくは出口端部544は流れの軸539に対して斜めに設けられる。上流側の入口端部542は、主に空間的な制約により、下流側の出口端部544よりも狭い幅を有している。外向きのタブ524の上流側の表面は、下流側の方向へ向かうにつれて、タブ524の上流側の表面が中心軸539から次第に半径方向に離れるように、外側に向かって凹面に設けられている。さらに、外向きのタブ524はまた、排気ガスを捕集し、排気ガスがタブから横向きに離れることを防止するように補助する翼部を有している。これらのタブはまた、角度方向において凹面に設けられているが、流れの軸539の方向とは反対側の方向を向く凹面に設けられている。] [0126] 図13および図14に示された温度プロファイルを参照すると、混合構成505は、既に検討したように、温度プロファイルを反転させるように調整されていることが示されている。さらに詳細には、上流側の温度プロファイルは、内側の高温の分流590、中間の分流592、および半径方向における外側の低温の分流594を有している。同様に、これらの分流は、説明と図示の目的のためだけに用いられるものである。] 図13 図14 [0127] 混合構成505からわずかに下流側において、温度プロファイルは、半径方向における外側方向へ向けられた(方向付けられた)高温の排気ガス543の異なる分流と、半径方向における内側方向へ向けられた(方向付けられた)低温の排気ガス541の異なる分流とから生成される複数の異なる温度の分流を有する。さらに詳細には、タブ523、524のいずれによっても全体として方向付けられない高温の排気ガス543によって生成される高温の中央の分流595が存在する。この高温の中央の分流595は、半径方向における外側に延在し、角度方向において離間される複数の脚部を有する中間の分流596によって、境界を有する。] [0128] これらの脚部は全体として、複数の、4つの低温の分流597によって互いに離間される。これら低温の分流597は、温度プロファイルの半径方向における外側の境界に向けて延在しているが、温度プロファイルの外側の周縁からは、実質的に半径方向における内側方向へ中央寄りに位置するものである。これらの低温の分流597は、低温の分流の大半が、内向きのタブ523の出口端部540と半径方向において整列しているとともに、半径方向における内向きのタブ523に対して角度方向において実質的に整列している。] [0129] さらに加えて、温度プロファイルは、半径方向における外側の、温度プロファイルの外側の周縁の近傍および缶516の近傍に、4つの追加された高温の分流598を含む。これらの高温の分流598は概して、外向きのタブ524によって半径方向における外側方向へ向けられる(方向付けられる)内側の高温の排気ガス543によって画成される。これらの高温の分流598は概して、低温の分流597から角度方向においてオフセットするとともに、外向きのタブ524と角度方向において整列している。] [0130] わずかに下流側の、さらなる温度プロファイルを示す。この温度プロファイルは、わずかな温度の反転を示している。さらに詳細には、中心軸539の近傍に、全体として高温の分流580が、依然として存在している。この高温の分流は、ここでは中間の分流582によって境界が設けられる。中間の分流582は、次いで上述した低温の分流597が角度方向において合流することによって生成される低温の分流584によって境界付けられる。しかしながら、この低温の分流584を境界付けるものは、ここでは中間の分流586である。この中間の分流586は、高温の分流598を上述した中間の分流596と混合することによってもたらされる。温度プロファイルは、上流側における高温の分流590の大半と低温の分流594の大半とが中間の分流と置き換えられたものであるとしても、実質的にはより均一とされていることに留意されたい。] [0131] 既に述べたように、この反転した温度プロファイルには、排気ガスをDPF(ディーゼル・パーティキュレート・フィルタ)に供給する際に、半径方向における外側の部分から熱を素早く拡散することができるという利点がある。この反転した温度プロファイルは、より大きな熱量をDPFの半径方向における外側の部分に供給し、そこにおいて大きな熱損失(熱拡散)を発生させることによって、DPFを通過する際のより一定の温度プロファイルを可能とする。] [0132] 本明細書中で引用する公報、特許出願および特許を含むすべての文献は、各文献を個々に、具体的に示し、引用して組み込むかのように、また、その全体を本明細書に記載するかのように、引用して組み込まれる。] [0133] 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞及び同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「〜を含むが限らない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番でおこなうことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、請求項に記載されていない要素を、本発明の実施に不可欠であるものとして示すものとは解釈されないものとする。] [0134] 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読めば、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを期待しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。] [0135] 100燃焼システム 102一次領域 103 ラジウス部(丸め部) 104 中間領域 105混合構成 106希釈領域 108ライナ 110流入孔(導入孔) 112 流入口 114 環(アニュラス) 116ハウジング(燃焼缶) 118点火領域 120 混合ジオメトリ(フィン)(流れ面) 122 混合ジオメトリ(付加的な面) 124 混合ジオメトリ(フィン)(流れ面) 126フレア 128隔壁体 130旋回流れ発生部(ドーム型) 132ノズル(ガスタービンエアブラスト型) 134ディフューザ(拡散部) 150等温度線(高温の排気ガス) 152 等温度線(低温の排気ガス) 205 混合構成 208 ライナ 214 環(アニュラス) 216 ハウジング(燃焼缶) 223内向きの配向タブ 224外向きの配向タブ 236出口端部(ライナ) 238入口端部(内向きの配向タブ) 239 流れの軸 240 出口端部(内向きの配向タブ) 241 低温の排気ガス 241a迂回する低温の排気ガス 241d 迂回する低温の排気ガス 242 入口端部(外向きの配向タブ) 243 高温の排気ガス 243b 迂回する高温の排気ガス 243c 迂回する高温の排気ガス 244 出口端部(外向きの配向タブ) 246 内側表面(ハウジング(燃焼缶)) 247上流側表面(外向きの配向タブ) 248下流側表面(外向きの配向タブ) 305 混合構成 308 ライナ 314 環(アニュラス) 323 内向きの配向タブ 324 外向きの配向タブ 338 入口端部(内向きの配向タブ) 339 流れの軸 340 出口端部(内向きの配向タブ) 341 低温の排気ガス 343 高温の排気ガス 346 内側表面(ライナ) 347上流側の表面(底部)(内向きの配向タブ) 360翼部(内向きの配向タブ) 362 翼部(内向きの配向タブ) 363 底部(内向きの配向タブ) 364 端部(翼部)(内向きの配向タブ) 366 端部(翼部)(内向きの配向タブ) 373凹部領域(内向きの配向タブ) 375 上流側の部分(翼部)(内向きの配向タブ) 377 上流側の部分(翼部)(内向きの配向タブ) 405 混合構成 410内部流路(混合構成) 412 脚部(混合構成) 416 ハウジング(燃焼缶) 439 流れの軸 441排気流れの第2の部分(低温の排気ガス) 443 排気流れの第1の部分(高温の排気ガス) 446 内側表面(ハウジング(燃焼缶)) 456 外側表面(混合構成) 466 谷部(混合構成) 468 底部(谷部) 470側壁(混合構成) 472 側壁(混合構成) 474カバー部(混合構成) 490温度プロファイルの領域(中央部分) 492 温度プロファイルの領域(中間部分) 494 温度プロファイルの領域(周辺部分) 496 低温の分流 498 高温の分流 505 混合構成 516 ハウジング(燃焼缶) 523 内向きの配向タブ 524 外向きの配向タブ 538 入口端部(内向きの配向タブ) 539 流れの軸 540 出口端部(内向きの配向タブ) 541 低温の排気ガス 542 入口端部(外向きの配向タブ) 543 高温の排気ガス 544 出口端部(外向きの配向タブ) 580 温度プロファイルの領域(中央部分)(下流側) 582 温度プロファイルの領域(中間部分)(下流側) 584 温度プロファイルの領域(低温部分)(下流側) 586 温度プロファイルの領域(中間部分)(下流側) 590 温度プロファイルの領域(中央部分)(上流側) 592 温度プロファイルの領域(中間部分)(上流側) 594 温度プロファイルの領域(周辺部分)(上流側) 595 温度プロファイルの領域(中央部分)(再編成後) 596 温度プロファイルの領域(中間部分)(再編生後) 597 温度プロファイルの領域(低温部分)(再編生後) 598 温度プロファイルの領域(高温部分)(再編生後)]
权利要求:
請求項1 流れの軸に沿って流れる排気流れを混合する方法であって:前記流れの軸に沿って前記排気流れを再編成するステップを備え;前記流れの軸に沿って前記排気流れを再編成するステップは:前記流れの第1の部分を前記流れの軸から半径方向における外側方向へ向けるステップと;前記流れの第2の部分を前記流れの軸に向けて半径方向における内側方向へ向けるステップとを有し;前記第1および第2の部分を向けるステップは、前記第1の部分を複数の第1の分流に分割して前記複数の第1の分流を半径方向における外側方向に向け、前記第2の部分を複数の第2の分流に分割して前記複数の第2の分流を半径方向における内側方向に向けるステップを含み;前記再編成するステップは、前記第1の部分と前記第2の部分との間の境界面積を拡大するステップを含む;方法。 請求項2 前記流れの第1および第2の部分を向けるステップは、前記流れの第1の部分の前記複数の第1の分流の断面の形状を変更するステップと、前記流れの第2の部分の前記複数の第2の分流の断面の形状を変更するステップとを含む、請求項1に記載の方法。 請求項3 前記流れの第1および第2の部分を向けるステップは、前記流れの第1の部分が前記再編成するステップの前において、前記流れの軸から第1の平均距離を有するように半径方向に位置し、前記再編成するステップの後において、前記流れの第1の部分が前記流れの軸から第2の平均距離を有するように半径方向に位置して、前記第2の平均距離は前記第1の平均距離よりも大きく、前記流れの第2の部分が前記再編成するステップの前において、前記流れの軸から第3の平均距離を有するように半径方向に位置し、前記再編成するステップの後において、前記流れの第2の部分が前記流れの軸から第4の平均距離を有するように半径方向に位置して、前記第4の平均距離が前記第3の平均距離よりも小さくなるように、前記流れの第1の部分の配置を前記第2の部分に対して相対的に変更するステップを含む、請求項2に記載の方法。 請求項4 前記複数の第1の分流の前記断面の面積が前記再編成するステップの間において一定に維持されるとともに、前記複数の第2の分流の前記断面の面積が前記再編成するステップの間において一定に維持される、請求項3に記載の方法。 請求項5 前記流れの第1の部分および前記複数の第1の分流は、前記再編成するステップの開始のときにおいて、前記流れの第2の部分および前記複数の第2の分流によって囲まれて前記流れの第2の部分および前記複数の第2の分流の半径方向における内側に位置し、前記再編成するステップの後において、前記複数の第1の分流は、複数の第1の角度方向において方向付けられた分流であり、前記複数の第2の分流は、複数の第2の角度方向において方向付けられた分流であって、前記複数の第1の角度方向において方向付けられた分流と前記複数の第2の角度方向において方向付けられた分流とを交互に入れ替えるステップにより、前記再編成するステップの後の前記排気流れが生成される、請求項1に記載の方法。 請求項6 前記排気流れは、前記再編成するステップの前において、前記半径方向における内側の流れが高温であり、前記半径方向における外側の流れが前記内側の流れに対して相対的に低温である半径方向において層状の温度プロファイルを有し、前記再編成するステップの後においては、前記複数の第1および第2の角度方向において方向付けられた相対的に他方に対して高温および低温の分流を前記交互に入れ替えるステップによって、前記排気流れの温度プロファイルが角度方向において層状となる、請求項5に記載の方法。 請求項7 前記流れの第1および第2の部分を向けるステップは、前記流れの第1の部分が前記再編成するステップの前において、前記流れの軸から第1の平均距離を有するように半径方向に位置し、前記再編成するステップの後において、前記流れの第1の部分が前記流れの軸から第2の平均距離を有するように半径方向に位置して、前記第2の平均距離は前記第1の平均距離よりも大きく、前記流れの第2の部分が前記再編成するステップの前において、前記流れの軸から第3の平均距離を有するように半径方向に位置し、前記再編成するステップの後において、前記流れの第2の部分が前記流れの軸から第4の平均距離を有するように半径方向に位置して、前記第4の平均距離が前記第3の平均距離よりも小さくなるように、前記流れの第1の部分の配置を前記第2の部分に対して相対的に変更するステップを含む、請求項1に記載の方法。 請求項8 前記再編成するステップの開始のときに、前記流れの第1の部分は前記流れの第2の部分によって囲まれて前記流れの第2の部分の半径方向における内側に位置し、前記流れの第2の部分を半径方向における内側方向に向けるステップは、前記流れの第2の部分の一部を直接的に半径方向における内側方向に向けるステップを含み、前記流れの第1の部分を半径方向における外側方向に向けるステップは、間接的に行われ、半径方向における内側方向に向けて前記流れの第2の部分のより多くの量を導入するステップによって可能とされる、請求項7に記載の方法。 請求項9 内燃機関であるエンジンからの排気ガスの流れの部分を交互に配置する排気ガスの混合装置であって:複数の第1の流れの配向タブと;複数の第2の流れの配向タブとを備え;前記第1および第2の流れの配向タブは、流れの軸を取り囲むように配置され;前記第1の流れの配向タブは、半径方向における内側の排気の流れを半径方向における外側方向へ向けるように構成され;前記第2の流れの配向タブは、半径方向における外側の排気の流れを半径方向における内側方向へ向けるように構成された;排気ガスの混合装置。 請求項10 前記第1の流れの配向タブは、上流側の入口端部と下流側の出口端部とを有し;前記第2の流れの配向タブは、上流側の入口端部と下流側の出口端部とを有し;前記第1の流れの配向タブの前記入口端部は、前記第1の流れの配向タブの前記出口端部の半径方向における内側に設けられ;前記第2の流れの配向タブの前記入口端部は、前記第1の流れの配向タブの前記出口端部の半径方向における外側に設けられ;前記第1の流れの配向タブの前記入口端部は、前記第2の流れの配向タブの前記入口端部の半径方向における内側に設けられ;前記第1の流れの配向タブの前記出口端部は、前記第2の流れの配向タブの前記出口端部と前記第1の流れの配向タブの前記入口端部の半径方向における外側に設けられた;請求項9に記載の排気ガスの混合装置。 請求項11 前記複数の第1の流れの配向タブの前記入口端部は、下流側の出口端部よりも狭く設けられ、前記複数の第2の流れの配向タブの前記入口端部は、下流側の出口端部よりも広く設けられた、請求項10に記載の排気ガスの混合装置。 請求項12 前記第1および第2の流れの配向タブの各々は、上流側に面した上流側の表面を有し;前記第1の流れの配向タブの前記上流側の表面は、前記入口端部から前記出口端部にかけて、前記上流側の表面の接線と前記流れの軸との間の角度の大きさが、前記入口端部から前記出口端部に向かうにつれて増加する凹面形状に設けられ;前記第2の流れの配向タブの前記上流側の表面は、前記入口端部から前記出口端部にかけて、前記上流側の表面の接線と前記流れの軸との間の角度の大きさが、前記入口端部から前記出口端部に向かうにつれて増加する凹面形状に設けられた;請求項10に記載の排気ガスの混合装置。 請求項13 前記入口端部の近傍の前記第1の流れの配向タブの前記上流側の表面と前記流れの軸との間の角度が、約0度から約20度までの間の角度に設けられ、前記流れの軸と前記第1の流れの配向タブの前記出口端部の近傍の前記上流側の表面との間の角度が、約30度から約70度までの間の角度に設けられ;前記入口端部の近傍の前記第2の流れの配向タブの前記上流側の表面と流れの軸との間の角度が、約0度から約20度までの間の角度に設けられ、前記流れの軸と前記第2の流れの配向タブの前記出口端部の近傍の前記上流側の表面との間の角度が、約30度から約70度までの間の角度に設けられた;請求項12に記載の排気ガスの混合装置。 請求項14 前記第1の流れの配向タブの前記上流側の表面は、半径方向における外側方向に面して設けられ、前記第2の流れの配向タブの前記上流側の表面は、半径方向における内側方向に面して設けられる、請求項12に記載の排気ガスの混合装置。 請求項15 前記第1の流れの配向タブの各々は、トラフ形の底部と、前記トラフ形の底部から外側方向および半径方向における外側方向に延在する2つの略半径方向において延在する側壁とを含むスコップ形状に設けられ; 前記第2の流れの配向タブの各々は、トラフ形の底部と、前記トラフ形の底部から外側方向および半径方向における内側方向に延在する2つの略半径方向において延在する側壁とを含むスコップ形状に設けられた;請求項12に記載の排気ガスの混合装置。 請求項16 前記複数の第1および第2の流れの配向タブは、全体として環状に形成される連続した単体の素材片から成形され、前記単体は、全体として円形の入口として設けられた上流側の端部と、前記流れの軸から外側方向へ延在する角度方向において間隔を空けて設けられた複数の三角形状の脚部から形成される下流側の端部とを有し、前記配向タブは複数の独立した素材片から形成されることがなく、従って互いに接続されて設けられることがない、請求項9に記載の排気ガスの混合装置。 請求項17 内燃機関であるエンジンからのディーゼル燃料排気を処理するためのディーゼル燃料排気の後処理システムであって:前記排気を加熱して半径方向において層状の温度プロファイルを生成する熱の発生装置と;前記熱の発生装置の下流側に設けられる混合構成とを備え;前記混合構成は:排気流れの半径方向における内側の部分を半径方向における外側方向へ向けるように構成される複数の第1の流れの配向タブと;排気流れの半径方向における外側の部分を半径方向における内側方向へ向けるように構成される複数の第2の流れの配向タブとを有する;ディーゼル燃料排気の後処理システム。 請求項18 燃焼装置のハウジングと;前記燃焼装置のハウジングの内部に設けられ、前記排気流れの半径方向における内側の部分が通過する、燃焼装置のライナと;前記燃焼装置のハウジングの内側の表面と、燃焼装置のライナの外側の表面との間に配置され、前記排気流れの半径方向における外側の部分が通過する環とを備え;前記混合構成は、前記排気の内側の部分と前記排気の外側の部分との分流を入れ替えることにより形成される複数の角度方向において層状に形成される分流が生じるように、前記第1の流れの配向タブが、前記燃焼装置のライナを通過する前記排気の前記半径方向における内側の部分を、前記燃焼装置のハウジングの前記内側の表面へ向けて半径方向における外側方向へ引き出し、前記第2の流れの配向タブが、前記環を通過する前記排気の前記半径方向における外側の部分を、半径方向における内側方向へ向ける;請求項17に記載の後処理システム。 請求項19 流路に対して垂直に取った、前記混合構成の上流側の前記環と前記燃焼装置のライナとを通過する前記排気の前記温度プロファイルは、半径方向における内側の流れに高温を有し、半径方向における外側の流れに、内側の流れに対して相対的に低温を有する、全体的に半径方向において層状に構成され;前記流路に対して垂直に取った、前記混合構成の下流側の前記排気の前記温度プロファイルは、それぞれ交互に高温の部分と低温の部分とを有する、全体的に角度方向において層状に構成される;請求項18に記載の後処理システム。 請求項20 前記高温の部分は、前記第1の流れの配向タブによって半径方向における外側方向に向けられた高温の排気により形成され、前記第1の流れの配向タブに沿って流れ、前記低温の部分は、前記第2の流れの配向タブによって半径方向における内側方向に向けられた低温の排気により形成され、前記第2の流れの配向タブに沿って流れる、請求項19に記載の後処理システム。 請求項21 前記第2の流れの配向タブは、前記内側のライナの半径方向における外側に設けられた入口端部と、前記内側のライナの半径方向における内側に設けられた出口端部とを有する、請求項18に記載の後処理システム。 請求項22 前記第1の流れの配向タブは、前記内側のライナと少なくとも半径方向において整列するように設けられた入口端部と、前記内側のライナの半径方向における外側に設けられた出口端部とを有する、請求項21に記載の後処理システム。 請求項23 少なくとも一の前記第1の流れの配向タブは、他の一の前記第1の流れの配向タブとは異なるように構成され、少なくとも一の前記第2の流れの配向タブは、他の一の前記第2の流れの配向タブとは異なるように構成された、請求項22に記載の後処理システム。 請求項24 前記第1の流れの配向タブは、半径方向および角度方向の両方向において凹面形状のスコップ形状に設けられた、請求項18に記載の後処理システム。 請求項25 前記第1の流れの配向タブは、主たる底部と、その間に前記主たる底部が延在する2つの外側に向けて延在する側壁とを有し、前記主たる底部と前記2つの外側に向けて延在する側壁によって、上流側の方向に開口するトラフ形状が画成される、請求項24に記載の後処理システム。
类似技术:
公开号 | 公开日 | 专利标题 JP4340770B2|2009-10-07|燃焼器エミッションを減少させる方法及び装置 US6826913B2|2004-12-07|Airflow modulation technique for low emissions combustors US3859786A|1975-01-14|Combustor KR940001924B1|1994-03-11|가스 터빈용 저 no_x 연소기 및 그 작동 방법 EP1106919B1|2006-06-21|Methods and apparatus for decreasing combustor emissions US7249721B2|2007-07-31|Device and method for injecting a liquid fuel into an air flow for a combustion chamber EP0356092B1|1992-04-22|Gas turbine combustor US8117846B2|2012-02-21|Gas turbine burner and method of mixing fuel and air in a swirling area of a gas turbine burner EP2027415B1|2015-10-28|Burner EP0747636B1|2003-03-05|Dry low emission combustor for gas turbine engines EP0877202B1|2004-06-02|Oxy/Oil swirl burner DE69822984T2|2004-08-12|Kraftstoffleitung US7140357B2|2006-11-28|Vortex mixing system for exhaust gas recirculation | DE112004002704B4|2011-04-07|Verbrennungsanlage US7469544B2|2008-12-30|Method and apparatus for injecting a fuel into a combustor assembly JP4162430B2|2008-10-08|ガスタービンエンジンの運転方法、燃焼器及びミキサ組立体 US7425127B2|2008-09-16|Stagnation point reverse flow combustor EP1795809B1|2016-01-20|Gas turbine combustor US6971242B2|2005-12-06|Burner for a gas turbine engine CA2449498C|2010-09-21|Premixing chamber for turbine combustor RU2470229C2|2012-12-20|Горелка EP1488086B1|2012-11-28|Dry low combustion system with means for eliminating combustion noise EP2912381B1|2018-06-13|Sequential combustion with dilution gas mixer US7665309B2|2010-02-23|Secondary fuel delivery system JP4162429B2|2008-10-08|ガスタービンエンジンの運転方法、燃焼器及びミキサ組立体
同族专利:
公开号 | 公开日 US20090255242A1|2009-10-15| WO2009126487A2|2009-10-15| CN102007278A|2011-04-06| EP2313622A4|2015-03-25| WO2009126487A3|2009-12-10| KR20110009663A|2011-01-28| CN102007278B|2014-05-14| US8459017B2|2013-06-11| EP2313622B1|2017-06-07| EP2313622A2|2011-04-27|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|